ISOLATION OF A DONOR-ACCEPTOR SUPERPHANE WITH A QUINOME AND A CpCo-CYCLOBUTADIENE UNIT

Rolf Gleiter and Detlef Kratz

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg, W. Germany

Abstract -

The reaction of cyclodeca-1,6-diyne with η^5 -cyclopentadienylcobaltdicarbonyl not only yields the cyclobutadiene-derivatives 2 and 3 but also the fourfold bridged donor-acceptor superphane 4 as a side product.

The reaction of cyclodeca-1,6-diyne (1) with η^5 -cyclopentadienylcobaltdicarbonyl (CpCo(CO)₂) in n-octane under reflux conditions gives the twofold CpCo-capped superphane of cyclobutadiene (2) and the cyclobutadiene

Scheme 1. a) in xylene, CpCo(CO)₂; b) in n-octane, CpCo(CO)₂

derivative 3 in yields of 12% and 6%, respectively (see Scheme 1).^{1,2} Since the exclusive occurrence of η^4 -cyclobutadiene complexes is rather the exception than the rule in such reactions³ we have looked for other by-products.

Our search for further molecules was rewarded in so far as we found an additional side product (0.7%) whose analytical data are consistent with structure 4. When the reaction is run in xylene under reflux conditions we were able to isolate the cyclopentadienone complex 5 in 5% yield (s. Scheme 1) next to 2 (1.7\%). Although 4 is formed in very small yield it is of considerable interest with respect to its formation and its properties.

Preliminary X-ray results on 4 confirm our structural assignment.⁴ The distance between the plane of the cyclobutadiene ring and the plane defined by the two C,C-double bonds of the guinone ring is found to be 2.95 Å. The quinone ring exhibits a tublike conformation in which the two CO groups are bent out of the plane of the quinone ring by $\approx 30^{\circ}$. From the three possible conformations (a-c) of the trimethylene chains, conformation a is preferred in the solid state.

A similar tublike conformation of the p-benzoquinone ring has been found in the case of p-quinoide compounds that are coordinated by a metal fragment (e.g. CpCo, CpRh)⁵ or in the case of [2.2] and [3.3] quinocyclophanes.⁶ The tublike conformation also accounts for the observation that the quinone moiety of 4 is not CpCo-complexed as is usually the case when quinones are formed in reactions of acetylenes and CpCo(CO)_2 .³ We ascribe the red colour of 4 to a charge transfer transition from the η^4 -complexed cyclobutadiene moiety to the nonplanar p-benzoquinone part. In Figure 1 we have compared the electronic spectra of 4 ($\lambda_{\max} = 424$ nm, log $\epsilon = 3.07$) with those of tetramethylbenzoquinone (6) ($\lambda_{\max} = 430$, log $\epsilon = 1.38$) and η^5 -cyclopentadienyl-tetraethyl- η^4 -cyclobutadienecobalt (7) ($\lambda_{\max} = 380$ nm,

Fig. 1 Electronic absorption spectra of 4, 6 and 7 in methylene chloride. The spectra of 6 and 7 are magnified by 10 for clarity.

log $\epsilon = 1.68$).⁷ A very broad longwavelength absorption, typical for charge transfer complexes of quinone⁸ is found. The nonplanarity of the quinone moiety in 4 rationalizes the observation that the longwavelength band in 4 occurs approximately at the same energy as in planar 6.

Most relevant analytical data of 4 and 7.

4: mp. > 250°C; ¹H-NMR (300 MHz, CDCl₃): δ = 4.31 (s, 5H), 2.72 (m, 4H), 2.43 (m, 4H), 2.25 (m,8H), 1.66 (m, 4H), 1.52 (m, 4H); ¹³C-NNR (75.47 MHz, $CDCl_3$: $\delta = 26.35$ (CH₂), 26.39 (CH₂), 26.71 (CH₂), 80.76 (CH), 82.25 (C), 143.74 (C=C), 190.78 (C=O); MB (EI): m/z 444 (M⁺, 12%), 388 (M⁺-(2x C=O), 17), 322 $(M^+-(C_5H_6, 2x C=0), 16)$, 189 $(Co(C_5H_5)_2^+, 12)$, 180 $(CoC_5H_5, 2x)$ C=0), 24), 152 (59), 124 (CoC_5H_5), 71), 91 (46), 59 (Co, 100), 44 (C_3H_8 , 63); IR (KBr): ν [cm⁻¹] = 2926 (CH₂), 2860 (CH₂), 1646 (C=0), 1620 (C=0), 1547, 1455, 1432, 1268, 1237, 799; **UV/VIS** (CH_2Cl_2): $\lambda_{max}[nm]$ (lg ϵ) = 266 (4.12), 320 (3.38), 424 (3.07).

7: ¹H-NMR (200 MHz, C_6D_6) $\delta = 4.67$ (s, 5H), 1.95 (q, ³J(H,H) = 7.5 Hz, 8H), 1.06 (t, ${}^{3}J(H,H) = 7.5$ Hz, 12H); ${}^{13}C-NMR$ (75.46 MHz, $C_{6}D_{6}$): $\delta = 15.48$ (CH₃), 21.20 (CH₂), 80.35 (CH), 80.51 (C); GC-MB (EI): m/z 288 (M⁺, 100%), 273 $(M^+-CH_3, 11)$, 259 $(M^+-C_2H_5, 71)$, 189 $(Co(C_5H_5)_2^+, 8)$, 124 (CoC_5H_5) 44), 91 (8), 59 (Co, 25); IR (CH_2Cl_2) : ν $[cm^{-1}] = 2866$ (CH₂), 1757, 1684, 1608, 1460, 1368, 819; UV/VIS (CH₂Cl₂): $\lambda_{max}[nm]$ (lge) = 234 (3.08), 264 (3.24), 298 (2.03), 380 (1.53).

Acknowledgement: We are grateful to the Deutsche Forschungsgemeinschaft (SFB 247), the Volkswagen-Stiftung, the Fonds der Chemischen Industrie, the BASF Aktiengesellschaft and the state Baden-Württemberg for financial support. D.K. is grateful to the Studienstiftung des Deutschen Volkes for a stipend.

References

- R. Gleiter, M. Karcher, M.L. Ziegler, B. Nuber, Tetrahedron Lett. 28 1 195 (1987).
- 2
- 195 (1987).
 R. Gleiter, M. Karcher, D. Kratz, S. Rittinger, V. Schehlmann in H. Werner, G. Erker (Eds.) Organometallics in Organic Synthesis 2, Springer Verlag, Berlin, Heidelberg <u>109</u> (1989).
 P.A. Corrigan, R.S. Dickson, Aust. J.Chem. <u>34</u>, 1401 (1981); R.S. Dickson, S.H. Johnson, ibid. <u>29</u>, 2189 (1976); W.-S. Lee, H.H. Brintzinger, J.Organomet.Chem. <u>127</u>, 93 (1977).
 M.L. Ziegler, B. Nuber, preliminary results.
 V.A. Uchtman, I.F. Dabl. Organomet (1972); G.G. 3
- V.A. Uchtman, L.F. Dahl, Organomet.Chem. <u>40</u>, 403 (1972); G.G. Aleksandrov, Y.T. Struchkov, V.S. Khandkarova, S.P. Gubin, **ibid**. <u>25</u>, 5 243 (1970); G.N. Schrauzer, K.C. Dewhirst, J.Am.Chem.Soc. 86, 3265 (1964); G.N. Schrauzer, H. Thyret, Angew.Chem. 75, 641 (1963).
- H. Irngartinger, R.-D. Acker, W. Rebafka, H.A. Staab, Angew.Chem. <u>86</u>, 705 (1974), Angew.Chem.Int.Ed.Eng. <u>13</u>, 674 (1974); H.A. Staab, C.P. 6
- Herz, C. Krieger, M. Rentea, Chem.Ber. <u>116</u>, 3813 (1983). Synthesis of 7: In 500 ml degassed decaline 1.6 g (6.89 mmol) CpCo $(C_{0}H_{12})$ are heated at 150° C. Under exclusion of air 2.16 g (28.3 7 mmol) 3-hexyne is added dropwise within 48 h. After further heating at 150⁰C for 12 h the solvent is removed and the residue is dissolved in n-pentane and chromatographed on Al_2O_3 (III). obtains 1.6 g 7 (80%) as a yellow oil that solidifies at $\approx -10^{\circ}C$. H.A. Staab, V.M. Schwendemann, **Liebigs Ann. Chem.**, 1258 (1979). One
- 8

(Received in Germany 12 August 1990)